Saturation Number of $tK_{l,l,l}$ in the Complete Tripartite Graph

نویسندگان

چکیده

For fixed graphs $F$ and $H$, a graph $G\subseteq F$ is $H$-saturated if there no copy of $H$ in $G$, but for any edge $e\in E(F)\setminus E(G)$, $G+e$. The saturation number $F$, denoted $sat(F,H)$, the minimum edges an subgraph $F$. In this paper, we study numbers $tK_{l,l,l}$ complete tripartite $K_{n_1,n_2,n_3}$. $t\ge 1$, $l\ge 1$ $n_1,n_2$ $n_3$ sufficiently large, determine $sat(K_{n_1,n_2,n_3},tK_{l,l,l})$ exactly.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Crossing Number of the Complete Tripartite Graph

Abstract: The well known Zarankiewicz’ conjecture is said that the crossing number of the complete bipartite graph Km,n (m ≤ n) is Z(m, n), where Z(m,n) = ⌊ m 2 ⌋⌊ 2 ⌋⌊ 2 ⌋ ⌊ 2 ⌋ (for any real number x, ⌊x⌋ denotes the maximal integer no more than x). Presently, Zarankiewicz’ conjecture is proved true only for the case m ≤ 6. In this article, the authors prove that if Zarankiewicz’ conjecture h...

متن کامل

Complete tripartite subgraphs in the coprime graph of integers

We denote by f(n, k) the number of positive integers m no,AC{1,2,...,n} with lAl>f(n,2) (if61n then f(n,2)= in), then the coprime graph induced by A contains a complete tripartite graph on 2 Lc,,,~~~;,,, J + 1 vertices where one of the classes ...

متن کامل

The Game Saturation Number of a Graph

Given a family F and a host graph H, a graph G ⊆ H is F-saturated relative to H if no subgraph of G lies in F but adding any edge from E(H)−E(G) to G creates such a subgraph. In the F-saturation game on H, players Max and Min alternately add edges of H to G, avoiding subgraphs in F , until G becomes F-saturated relative to H. They aim to maximize or minimize the length of the game, respectively...

متن کامل

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

Irredundance saturation number of a graph

Let G = (V,E) be a graph and let v ∈ V. Let IRS(v,G) denote the maximum cardinality of an irredundant set in G which contains v. Then IRS(G) = min {IRS(v,G) : v ∈ V } is called the irredundance saturation number of G. In this paper we initiate a study of this parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2021

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/10116